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SUMMARY

This article describes an application of nonparametric regression to study the spatial structure and identify
persistent spatial patterns of the perennial weed Convolvulus arvensis L. in 4 years of wheat-sunflower crop
rotation in Southern Spain. The annual spatial distributions of weed patches over the study field are estimated
using local linear regression. These are then used to delimit areas whose infestation is above an economic
threshold. In order to identify the areas at the highest risk of weed infestation across years, a multi-year index is
developed and mapped. A parametric bootstrap is used to quantify the variability of the multi-year map. In a
precision agriculture environment, such maps can be a useful component of a long-term weed management
strategy. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This article describes an application of local linear regression, a popular nonparametric regression

method, to the problem of mapping the persistent spatial distribution of the perennial agricultural weed

Convolvulus arvensis L. in a field over the course of four growing seasons. Local linear regression has

been broadly studied in the context of univariate regression, and we refer to Wand and Jones (1995) for

an overview. For bivariate local linear regression, Ruppert and Wand (1994) provide the relevant

asymptotic theory for the case in which the errors are independently distributed. In the spatial context,

this assumption of independence is often not appropriate, and accounting for possible correlation is

required for both inference and smoothing parameter selection. For a review of issues related to
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nonparametric regression with correlated errors, see Hart (1996) and Opsomer et al. (2001). Recently,

Francisco-Fernández and Opsomer (2005) discussed spatial smoothing and proposed a bandwidth

selection method that allows for the presence of correlated errors.

C. arvensis, the plant species of interest in the current article, is a perennial weed that infests wheat

(Triticum aestivum L.) and sunflower (Helianthus annuus L.), the main crop rotation in Andalusia

(southern Spain). In the context of weed management, an important characteristic of C. arvensis is that

it produces few viable seeds when growing in competition with agricultural crops, and instead

reproduces primarily vegetatively by underground rootstock. As many fields of wheat–sunflower

rotations have been converted into no-tillage or reduced tillage, perennial weeds like C. arvensis have

become more troublesome because they can no longer be reduced in abundance by repeated tillage or

cultivation (Liebman et al., 2001). Reduced-tillage and no-tillage productions, which involve modern

agricultural techniques aiming to minimize soil erosion and increase soil organic matter, have

increased in Spain in the last 10 years and now accounts for 2 million ha of annual crops (Anonymous,

1998).

It is well known that many weed populations have a patchy distribution (Johnson et al., 1996), with

aggregated weed patches of varying size and density interspersed with areas with few or no weed

seedlings. Aweed patch is considered stable if it is consistent in density and location over time (Wilson

and Brain, 1991). Stability is important from the perspective of patch management, since knowledge

of the location of patches with high weed density can be used to direct weed control in subsequent

years. This is especially true for perennial weeds in reduced tillage systems, where ploughing and

cultivation are no longer considered acceptable management options and where farmers want to make

informed decisions on the precise use of herbicides (Webster et al., 2000).

Currently, herbicides are most often applied to the entire field even though spraying might be

unnecessary in some places. An important goal of site-specific weed control is to apply herbicide only

in areas where weed density exceeds an economic threshold (ET) (Dammer et al., 1999). Such an

approach has the potential for significantly reducing herbicide use, especially if the location of the

weed patches could be determined before the weed plants are fully established. The average reduction

in herbicide use from site-specific weed control in cereals ranged from 47 to 80 per cent (Heisel et al.,

1996a). In maize, Tian et al. (1999) realized savings of 42 per cent, and Timmermann et al. (2001)

reported that with a site-specific weed control an average of 54 per cent of the herbicides could be

saved in sugar beet. In sunflower, Jurado-Expósito et al. (2003) achieved an average reduction in

herbicide cost around 61 per cent if a given herbicide were applied just to the areas exceeding the ET.

In order to implement a site-specific herbicide application strategy, a weed patch distribution map is

required.

Previous work on the mapping of weed patches includes linear triangulation (Gerhards et al., 1997),

polynomial interpolation (Zanin et al., 1998), and kriging. Kriging weighs the average of observed

weed densities and is the only of these three approaches that estimates the variance (Cressie, 1993,

pp. 183–194; Isaaks and Srivastava, 1989). The adoption of this approach in weed research has been

very recent, but has shown to be useful in quantifying the spatial structure of weed populations

(González-Andújar et al., 2001; Heisel et al., 1996b; Jurado-Expósito et al., 2003). However, kriging

methods used in these applications assume a constant and known trend. When this assumption is

violated, model mis-specification bias can result.

In this article, we develop maps for the spatial distribution of C. arvensis over the course of

the 1999–2002 growing seasons, for a sample of 261 locations at which the number of plants of

C. arvensis were counted. Using the concept of economic thresholding discussed above, we identify

the areas in each annual map where herbicide applications are warranted under a site-specific weed
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control strategy. In addition to the individual year analyses, we will also use a bootstrap-based method

to generate a map that shows the probability of being at high risk of infestation across years. Such a

map can be used in subsequent years to predict the places that are most likely to be affected by

C. arvensis. A multi-year map can be useful to formulate and implement site-specific weed control

strategies that take the persistent nature of C. arvensis infestations into account.

The broader goal of the article is to demonstrate how a combination of nonparametric regression

and bootstrap methods can accommodate a variety of modelling and visualization needs in the weed

management context. We show how to produce maps that can be based on a variety of customized

management criteria, as well as ways to perform assessments of the variability of the estimates and

conduct sensitivity analyses.

The organization of the remainder of this article is as follows. Section 2 describes the statistical

model and reviews the nonparametric estimator. Section 3 provides information on the study area, the

sampling design and measurement techniques used to obtain the data. In Section 4, we describe the

results of the data analysis.

2. LOCAL LINEAR REGRESSION FOR SPATIAL DATA

We briefly describe the spatial nonparametric regression model to be used for the C. arvensis data.

Assume that a set of R3-valued random vectors, fðXi; YiÞgn
i¼1, are observed, where the Yi are scalar

responses variables and the Xi are predictor variables with a common density f and compact support

� � R2: In this article, we will refer to the Xi as the locations corresponding to the Yi. The relationship

between the locations and the responses variable is assumed to be of the form

Yi ¼ mðXiÞ þ "i; i ¼ 1; 2; . . . ; n; ð1Þ

where mðxÞ is an unknown continuous and smooth function,

Eð"ijXiÞ ¼ 0; Varð"ijXiÞ ¼ �2;

Covð"i; "jjXi;XjÞ ¼ �2�ðXi � XjÞ;

with �ðdÞ continuous, satisfying �ð0Þ ¼ 1, �ðdÞ ¼ð�dÞ, and j�ðdÞj � 1, 8d. The presence of the

function � implies that the observations are spatially correlated. Francisco-Fernández and Opsomer

(2005) discuss the asymptotic framework under which a local linear regression estimator for this

model is consistent.

The model (1) assumes that the mean of the response variable Y is an unknown smooth function of

location, ‘masked’ by zero-mean (stationary) errors that are subject to spatial correlation. This is in

contrast to the kriging model, which typically assumes that the response variable is a simpler (linear or

constant) function of location supplemented by spatially correlated noise. In the kriging model, a

larger fraction of the observed behaviour of the data is therefore attributed to noise instead of to the

underlying mean function. Formally determining which model is in fact correct for the data cannot be

done without replication of the data, and in practice, both approaches lead to estimated spatial maps

that are similar. However, the interpretation of the map and the accompanying inference statements are

different. See Altman (1997) for a discussion.
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The estimator for mð�Þ at a location x is the solution for � to the least squares minimization problem

min
�;b

Xn

i¼1

Yi � �� bTðXi � xÞg2
KHðXi � xÞ;

n

where H is a 2� 2 symmetric positive definite matrix; K is a bivariate kernel and KHðuÞ ¼
jHj�1

KðH�1uÞ. The Epanechnikov kernel function KðxÞ ¼ 2
� maxfð1 � kxk2Þ; 0g, a common choice

for local linear regression, will be used throughout this article. The bandwidth matrix H controls the

shape and the size of the local neighbourhood used for estimating mðxÞ. The local linear regression

estimator can be written explicitly as

m̂ðxÞ ¼ eT
1 XT

x WxXx

� ��1
XT

x WxY � sT
x Y; ð2Þ

where e1 is a vector with 1 in the first entry and all other entries 0, Y ¼ Y1; . . . ; Ynð ÞT
,

Wx ¼ diagfKHðX1 � xÞ; . . . ; KHðXn � XÞg, and

Xx ¼
1 ðX1 � xÞT

..

. ..
.

1 ðXn � xÞT

0
B@

1
CA:

This estimator depends on the choice of the values used in the bandwidth matrix H. We will base

our choice of bandwidth values on the correlation-adjusted generalized cross-validation method of

Francisco-Fernández and Opsomer (2005), who showed both asymptotically and through simulations

that this method works well for spatially correlated data, as long as the correlation can be reasonably

approximated by a smoothly decaying function of distance between locations. While knowledge of the

correlation function �(d) is not required to estimate mðxÞ, a parametric form for �(d) is needed for this

bandwidth selection method. Also, valid inference and confidence intervals for mðxÞ that take the

correlation into account require a parametrically specified correlation function. This is further

explored in Section 4.

3. DESCRIPTION OF DATA

The data were collected during the course of four growing seasons (1999–2002). The four surveys

were conducted in a field of about 1.6 ha located at Monclova (La Luisiana, Seville), in Andalusia,

southern Spain. The field site was farmer-managed using no-tillage production methods. Wheat

(Triticum aestivum L.) was sown in 1999 and 2001, and sunflower (Helianthus annuus L.) in 2000 and

2002. Conventional herbicides practices for weed control were used. Glyphosate was applied pre-

emergence at a rate of 2 L/ha for the control of annual weed seedlings in wheat and sunflower. At these

rates, the herbicides had no significant activity on perennial shoots of C. arvensis.

Sample measurements of weed density were made in early May before crop harvesting, using a

procedure summarized as follows. An area measuring 65 m wide by 250 m long was selected for the

intensive survey in 1999, and the same area was sampled again in subsequent years. The survey area

was located in a larger field of approximately 40 ha, and its borders were at least 50 m from the main
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borders of the field. Crop rows were always oriented south-north across the study area during the

course of the study. C. arvensis density assessments were performed following an approximate 7 by

7 m grid pattern, resulting in a total of 261 sampling units. The position of each grid point was

georeferenced using a Differential Global Positioning System (DGPS) and recorded in UTM East/

North coordinates (in meters). At each node, the number of individual plants of C. arvensis were

counted in a 2 by 2 m square. Figure 1 shows the 261 locations where the number of plants were

counted each year. A portion of the data used in this study were previously studied by Jurado-Expósito

et al. (2003), where a more detailed description of the study design and measurements is provided.

Based on previous research, the economic threshold (ET), i.e., the C. arvensis density causing a

reduction in net wheat or sunflower yield equal to the control treatment cost, was estimated at

approximately 14 plants/m2 (Castro-Tendero and Garcı́a-Torres, 1995). Hence, if a wall-to-wall

application of herbicide is to be replaced by a site-specific application, the location of patches of

C. arvensis with density exceeding ET would represent the optimal application target. For any ET

value, it would be possible to produce target herbicide application maps for each year by identifying

which parts of the field have estimated weed densities higher than ET. The percentage of annually

saved herbicide compared to wall-to-wall application could then readily be estimated from these maps.

In the case of perennial weeds like C. arvensis, there is a clear interest not only in locating the high

density patches in any given year, but also to determine the location of areas most at risk of multi-year

infestations. If those areas in particular can be targeted for treatment, it might be possible to further

reduce the long-term of treatment needs for the overall field. Because many factors affecting both the

crop and weed growth vary across the years, the size and exact location of C. arvensis ‘clumps’ change

in character, so that a multi-year map will need to be able to incorporate such heterogeneity.

Figure 1. Locations (in UTM East/North coordinates) of C. arvensis measurements
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While such a map could be based on a wide range of different methods to combine annual estimates,

we decided after some experimentation with alternatives to use a relatively simple rule based on ET:

a field point is considered significantly at risk of infestation if its weed density exceeds the ET in at

least 3 of the 4 years.

More complicated rules could certainly be applied, but the main characteristic of interest of this

rule is that it does not lead to a statistical estimator with readily quantifiable properties. Hence, we will

use it to illustrate the use of bootstrapping and sensitivity analysis in the assessment of customized

weed management strategies. In particular, because any ET value is only an approximation that

depends on weed management costs and crop market conditions, we will assess how sensitive the

results are to the chosen ET value.

4. RESULTS

We begin by fitting the nonparametric regression model (1) to the data from each year separately. In

order to produce a map for the survey area of interest, the local linear estimates were computed on a

dense regular 200� 200 grid overlaying the field. As noted in Section 2, the adjusted GCV method for

bandwidth selection of Francisco-Fernáandez and Opsomer (2005) requires the specification of a

model for the correlation. We used the exponential model

�ðdÞ ¼ exp ��kdkð Þ ð3Þ

for this purpose, where � is an unknown parameter, and fitted that model to the residuals of a pilot local

linear regression fit. Visual inspection of the plots (not shown) comparing observed and model

predicted correlations at a range of distances indicated that the exponential model fitted the data

reasonably well. As this model specification is used in the selection of bandwidth values and does not

determine the actual shape of the spatial distribution function mðxÞ in (1), modest differences between

the true spatial correlation and the assumed correlation model would have a negligible effect on m̂ðxÞ.
The bandwidth selection method was applied to each of the 4 years individually, and resulted in

bandwidth matrices that had similar but not identical characteristics. In order to avoid introducing

differences between the years due to the bandwidth, it was decided to use a single bandwidth matrix

for all the years, by taking the average of the annual bandwidth matrices. Hence, the bandwidth matrix

used for all years was equal to

H ¼ 44:81 10:34

10:34 39:41

� �
:

This corresponds to a moderate amount of smoothing, since this bandwidth matrix implies that for

any location x not on the boundary of the study region, 20–25 per cent of the observations have non-

zero weight in the nonparametric regression fit.

Figure 2 shows the estimated weed densities for the 4 years. A visual assessment reveals distinct

aggregation of infested areas for all years. The C. arvensis populations appear more highly aggregated

in sunflowers years (Figure 2, 2000 and 2002) compared to the wheat years, and a higher amount of

surface area was free of C. arvensis plants in sunflower years. This is consistent with the fact that when
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C. arvensis grows in competition with sunflower, its patches are less numerous and smaller than as

compared with wheat (Jurado-Expósito et al., 2005). For any location x in a field in a given year, it is

possible to construct an asymptotically correct confidence interval for the local linear regression

estimator m̂ðxÞ, by using the asymptotic normality assumption and the estimated variance–covariance

matrix of the data under the assumed correlation model (3) and homoskedasticty. See Lindström et al.

(2005) for an example of this approach. We skip this step here, and will instead perform a variability

assessment using bootstrapping methods after constructing a multi-year map (see below).

If we wanted to apply annual location-specific herbicide treatments to this field using the proposed

ET value as a guide, Figure 3 displays which areas would need to be treated at the threshold value of

14 plants/m2 mentioned in the previous section. As these maps show, a large fraction of the field would

have to be treated every year except for the year 2000. Specifically, for ET¼ 14, the fractions of the

surface area that would have to be treated annually according to this rule are estimated to be

76.0 per cent in 1999, 52.6 per cent in 2000, 88.3 per cent in 2001 and 78.0 per cent in 2002. As noted

earlier, if the areas most prone to weed infestation across all years could be identified, this knowledge

could guide weed scouting and management. We therefore implemented the ‘at-risk’ rule defined in

Section 3 for ET¼ 14, and Figure 4 displays the resulting spatial distribution map.

The above analysis is useful in identifying portions of the field that appear to be most vulnerable to

infestation by C. arvensis in individual years as well as across years. However, there is no

accompanying measure of variability. In particular, the map in Figure 4 is sensitive to locations

whose estimated weed densities are highly variable, as is more likely to happen on the boundaries of

the study region, or at locations with weed densities close to the ET in any given year. For instance, it is

not clear how to interpret the irregular boundary region seen in the South-East corner of Figure 4, or

Figure 2. Local linear regression of C. arvensis distribution in years 1999–2002 (Plants/m2)
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Figure 3. Site-specific herbicide application maps obtained for ET¼ 14 weeds/m2; shaded areas are those needing herbicide

treatment

Figure 4. Multi-year map of areas at risk (shaded) and not at risk (white) of persistent C. arvensis infestation, for ET¼ 14

weeds/m2
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the small area in the center top of the plot. Unlike for the assessment of the variability of the estimated

surfaces in Figure 2, there is no readily available method to provide uncertainty estimates for the

surface shown in Figure 4.

In order to incorporate variability assessments in this analysis, we extended the parametric

bootstrap for correlated data discussed in Vilar-Fernández and González-Manteiga (1996). For each

year, a bootstrap dataset is generated by taking the estimated mean spatial surface m̂ðxÞ (as shown in

Figure 2), and adding bootstrap errors generated as a spatially correlated set of errors. The annual

bootstrap errors are obtained by the following steps: (1) fit a homoskedastic exponential model to the

residuals from the original regression for that year and obtain parameter estimates, (2) using the

Cholesky decomposition of the variance–covariance matrix obtained with the estimates in step 1,

transform the original residuals so that they are approximately independent and identically distributed,

(3) draw initial bootstrap errors with replacement from the transformed residuals, and (4) transform

the initial bootstrap errors back so that their variance–covariance matrix matches that of the original

residuals, using the Cholesky decomposition obtained in step 2. This procedure relies on model

assumptions for the variance–covariance matrix of the errors, but does not require the full distribution

of the errors to be known since it relies on resampling of (transformed) residuals. As an alternative to

this procedure, it would also be possible to use the estimates obtained in step 1 above as parameters in

a known parametric family (e.g. Gaussian), and generate correlated bootstrap samples directly from

that distribution. We do not explore this further here.

Once the annual bootstrap datasets are obtained, the above annual nonparametric regressions are

repeated for each bootstrap sample using the same bandwidth H as for the original analysis, and a

bootstrap map of at-risk areas as in Figure 4 is produced. This process is repeated 1000 times. The

result is the map in Figure 5, which displays the frequency, across bootstrap replicates, for each

Figure 5. Map with pointwise bootstrap probabilities of being considered at risk of infestation
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location of how often that location is included in the at-risk area. This analysis indicates that the area

of most concern in this field is primarily the South-West quadrant of the field, while the areas

stretching in the North-East and South-East observed in Figure 4 have become somewhat ‘fainter’, in

the sense that their probability of being at risk are estimated to be lower.

Finally, in order to evaluate the sensitivity of this procedure to the choice of ET, we repeated the

complete analysis for different values of the threshold. Figure 6 compares the results obtained for

ET¼ 14 to those for ET¼ 16, 18 and 20. The main difference is that the overall area of concern

decreases in size as ET is set at higher values, with the North-East and South-East components almost

completely disappearing for higher ET, while the South-West quadrant continues to be identified as the

main problem area. Hence, even across different values for ET, the South-West quadrant appears to be

identifies as the primary area of concern and an important target for more intensive weed management

practices.

5. CONCLUSION

In this article, we have developed a method for displaying the portion of a field that is at risk for

infestation by perennial weeds, through a combination of nonparametric regression and economic

thresholding. A parametric bootstrap was used to estimate the variability of the estimates, and can also

be viewed as an estimate of the likelihood to be at risk for infestation. Our method used an economic

threshold on weed patch density to determine what constitutes an ‘at risk’ location as well as a

Figure 6. Map with pointwise bootstrap probabilities of being considered at risk of infestation, for different values of the

economic threshold
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heuristic rule to combine data from different years. Both of these features of our method could be

extended or customized for different situations, for instance by having different thresholds for

different crops or by replacing the multi-year measure by a different type of thresholding altogether.

More generally, the overall approach of spatial smoothing and bootstrap-based density mapping

provides a useful and flexible set of statistical tools with which to visualize and analyse spatial

distribution data.
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has been partially supported by a CICYT-FEDER project (AGL2005-06180-CO3-02) and a MEC-Ramón y Cajal
Program, respectively.

REFERENCES

Altman NS. 1997. Krige, smooth, both or neither? ASA Proceedings of the Section on Statistics and the Environment. American
Statistical Association: Alexandria, VA; 60–65.

Anonymous. 1998. Guı́a de agricultura de conservación de cultivos anuales. Ed. Asociación Española de Agricultura de
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